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Summary

The drag reducing properties of riblet surfaces, which reduce turbulent skin friction by up to 10-15%, depending
on the particular geometry, are analysed. In the so called viscous regime, for vanishing riblet spacing, the drag
reduction produced by riblets is proportional to their size. However, for a riblet spacing ∼ 10+-20+ that depends
on the riblet shape, the viscous regime breaks down, and the drag reduction eventually becomes drag increase.
Although some work has been done on the breakdown of the viscous regime, its mechanism is not yet fully
understood, and the exact spacing for maximum drag reduction can only be determined experimentally. A new
length scale is proposed, the groove cross-section A+

g , for which drag reduction results for different geometries
collapse significantly better. To investigate the breakdown of the viscous regime, DNSes with increasing riblet
size are systematically conducted. The interaction of the overlying turbulent flow with the riblets and its impact
on the drag reduction properties of the ribbed surface are analysed.

1 Introduction

The reduction of skin friction for turbulent flow has been an active area of research in the past decades. Surface
riblets are one of the techniques successfully investigated. They are small surface protrusions, or grooves, aligned
with the direction of the flow, that confer an anisotropic roughness to the surface. They usually have small
sizes. For practical aircraft applications, the optimum riblet separation is of the order of 30-70 µm.

Riblets of very different geometries have been tested with varying results. Walsh and Lindemann [33]
performed wind tunnel tests on different riblet shapes, including triangular, notched-peak, sinusoidal, and U-
shaped riblets, obtaining a maximum drag reduction of 7–8% for riblet spacings of approximately 15 wall units.
Walsh also published an early but quite broad review [32], in which results for various shapes were given. More
recent reviews are those of Choi [8] and Bushnell [5]. Riblet experiments have also been conducted in oil and
water channels, which allow larger riblet dimensions, and consequently better control of the geometry. Oil
channel tests of shark-skin replicas, hairy surfaces, and riblets with adjustable geometry have been conducted
by the group led by Bechert et al. [4, 3]; they also conducted extensive tests on blade-shaped and trapezoidal
groove riblets [2], and proposed the latter as a compromise between optimum performance and practicable
fabrication and maintenance. Itoh et al. [16] have lately tested the drag reduction ability of seal fur in a water
and glycerol channel, obtaining a maximum reduction of 12%.

Concerning the physical mechanism of the riblet drag reduction effect, many experiments have been
conducted to observe and analyse the detailed flow field within and above the grooves. Mean and local velocity
profiles and turbulent statistics have been reported for experiments both in wind tunnels [31, 27, 23] and water
channels [29]. Bechert and Bartenwerfer [1] proposed that the drag reduction is caused by a protrusion height,
or offset between the virtual origin seen by the streamwise shear flow and some notional mean surface location.
Compared to a smooth wall, this offset would result in a greater separation between the wall and the turbulent
streamwise vortices, reducing the momentum exchange at the wall. The correct form of the protrusion height
was given by Luchini et al. [24], who defined it as the offset between the virtual origins of the streamwise and
spanwise flows. Its relation with the drag reduction was given by Jiménez [18] from DNS results.

Several works have analysed the flow structure over riblets from a numeric simulation perspective. Chu
and Karniadakis [9] and Choi et al. [6] conducted DNSes of turbulent flow over triangular-shaped riblets,
obtaining turbulent statistics and skin friction data. Choi et al. proposed that the drag reduction worsens for
large riblet spacings because vortices tend to lodge inside the riblet grooves. Goldstein et al. [13] performed
DNS experiments to investigate the drag reduction mechanism, concluding that such reduction is due to the
damping of the spanwise velocity by the riblets. Goldstein and Tuan [14] later investigated by DNS the reason
why drag reduction worsens for large spacings, concluding that the deterioration is due to a two-dimensional
phenomenon in the crossflow; the unsteadiness of the spanwise flow generates secondary streamwise vorticity
over the riblets that creates extra dissipation. On the other hand, it is known that spanwise oscillation of the
wall, which also presumably introduces unsteady vorticity, decreases drag [21], and that modifying the spanwise
boundary condition to inhibit the creation of secondary wall vorticity increases it [17, 20]. The issue therefore
remains unresolved.
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Figure 1: Effect of the peak-to-peak distance, s+, on the skin friction of a triangular riblet with 60◦ peak sharpness,
from [2].

This paper is organised in two parts. The first one, including Sections 2 and 3, is dedicated to the review
of the available experimental data and the conclusions derived from it. Section 2 reviews the different regimes
experimentally found for riblet drag reduction and discusses the possible physical mechanisms involved in the
breakdown of the linear behaviour. We analyse the viscous regime for very small riblets, its breakdown and the
optimum performance of riblets. Section 3 discusses the suitability of the parameters that have traditionally
been used to express riblet drag reduction, and propose an alternative set. We find that, when drag reductions
are expressed as a function of the groove cross-section instead of the riblet spacing, the points of optimum
performance of the geometries reviewed collapse with a scatter below 15%. Using the viscous slope obtained
from two-dimensional Stokes simulations, the maximum drag reduction obtainable from a given riblet geometry
can then be predicted with an error below 20%. The second part of the paper, covered by Sections 4 and 5,
deals with a numerical simulation approach to the understanding of the breakdown of the viscous regime. First
we briefly outline the numerical method used for the Direct Numerical Simulation (DNS) of ribbed channels,
and give the parameters of the simulations. In Section 5 we present the simulation results, and discuss the
relationship between the breakdown of the viscous regime, the riblet geometry and the overlying turbulent flow.
We summarise our conclusions in the final section.

2 Drag-reduction regimes for riblets

2.1 The viscous regime

Early in the investigation of riblets, experiments showed that the Reynolds number dependence of their effect
on the skin friction could be expressed in large part in terms of the riblet spacing measured in wall units,
s+ = suτ/ν, where ν is the kinematic viscosity, and uτ is the friction velocity [33], typically 2–3% of the
velocity outside the boundary layer for aircraft cruise conditions. Figure 1 shows a typical curve of the drag
reduction as a function of riblet spacing. For small s+, the contribution of the nonlinear terms to the flow
over the riblets is negligible, and the drag reduction, DR = −∆τ/τ0, behaves linearly, where τ0 is the skin
friction for the smooth wall. We will denote this regime as ‘viscous’. For s+ & 10, the drag reduction departs
from this linear trend, and eventually turns into a drag increase with respect to smooth surfaces, adopting
a typical k -roughness behaviour [19]. The optimum spacing for which drag reduction is maximum is usually
s+

opt ≈ 10− 20. Both the slope of the drag curve in the linear region,

m0 = − ∂(∆τ/τ0)
∂s+

∣∣∣∣
s+=0

, (1)

and the optimum riblet spacing s+
opt, depend on the riblet geometry, but the qualitative behaviour is always as

just described.
In the following, we will call x, y and z to the streamwise, wall-normal and spanwise coordinates, and u,

v and w to the corresponding velocity components.
There is a thin near-wall region in turbulent flows over smooth walls in which viscous effects are dominant,

and where the mean velocity profile is linear. Its thickness is 5–10 wall units [30], and nonlinear inertial effects
can be neglected within it. From the point of view of this layer, the outer flow can be represented as a time-
dependent, but otherwise uniform shear. Riblets destroy this uniformity near the wall but, if s+ ¿ 1, the flow



still behaves as a uniform shear for y À s. A further simplification is that, since the equations of motion are
locally linear, and since the riblet boundary is uniform in the streamwise coordinate and the outer shear varies
only slowly with x, when compared with the variations in the cross plane z− y, the problem decouples into two
parts, both of which are two-dimensional in the cross plane z − y. One is the longitudinal flow of u, driven by
a streamwise shear

u ≈ S1 (y −∆u), y →∞. (2)

The other one is the transverse flow of v and w, driven by

w ≈ S3 (y −∆w) and v → 0, y →∞. (3)

Far from the wall the effect of the riblets reduces to the virtual origins ∆u and ∆w, which are different for the
two flow directions. It was suggested in [1, 24] that the offset between those two virtual origins, the ‘protrusion
height’, ∆h = ∆w −∆u, was the reason for the drag reduction in the viscous riblet regime. Intuitively, if the
cross flow has a higher virtual origin than the longitudinal one (∆h > 0), the spanwise flow induced by the
overlying streamwise vortices is impeded more severely than it would be over a smooth wall. The streamwise
vortices are displaced away from the wall, and the turbulent mixing of streamwise momentum is reduced. Since
this mixing is responsible for the high local shear near the wall [26], its reduction results in a lower skin friction.

The numerical calculation of ∆h is a simple problem, which only requires the solution of two steady two-
dimensional Stokes flows: the streamwise and spanwise flows which yield ∆u and ∆w. This problem is much
simpler, and implies a much smaller computational effort, than the complete problem of simulating the turbulent
flow over ribbed walls. It is therefore of great interest to extend the application of Stokes two-dimensional results
as much as possible into the riblet drag reducing performance range.

2.2 The breakdown of the viscous regime

As the Reynolds number of the riblets increases, the predictions of the viscous theory, and in particular the
linear dependence of the drag reduction with s+, break down. This is the regime that ultimately limits the
practical performance of riblets, and understanding it is therefore important. In particular, if it could be shown
that the Reynolds number of breakdown is somehow related to the geometry of the riblet, it might be possible
to devise surfaces with critical Reynolds numbers higher than the present ones, and consequently with higher
peak performances. We will see in Section 3.2 that there is some evidence for this possibility, but the range of
optimum spacings is narrow, and the reason for their variation is, in any case, not understood.

The theories for why the effect of riblets deteriorates beyond s+ ≈ 10 fall into two broad groups. One
is that their effect on the crossflow somehow loses effectiveness once the flow moves away from the Stokes
regime. Reference [14], already mentioned in the introduction, is in that class. They propose that, once the
crossflow over the riblets starts separating and shedding small-scale vortices, the extra dissipation appears in
the flow as drag. We have also mentioned contradictory evidence, both from unsteady spanwise oscillations
of the wall, which decrease drag even if they presumably introduce extra vorticity [21], and from numerical
experiments that increase drag by inhibiting the formation of secondary vortices [17, 20]. The message of those
experiments could be that introducing small-scale streamwise vorticity at the wall decreases drag by damping
the larger streamwise vortices of the buffer layer, and therefore that inertial crossflow effects could be beneficial,
rather than detrimental, for drag reduction. The other group of theories assumes that the observed optimum
wavelength, s+ ≈ 10 − 20, is related to the scale of the turbulent structures in the wall region. In that group
we could mention the observations in [29, 23, 6] that the degradation of the drag reduction coincides with the
lodging of the vortices within the riblet grooves. A possibility that did not seem to have been considered in
the literature is that the concept of protrusion height could be extended beyond the strictly viscous regime,
and that the observed deviations from linearity are due to nonlinearities within, but not necessarily above, the
riblets. In that model the flow far from the riblets could still be considered a simple steady shear, but within the
riblets it would already begin to feel the effects of the finite Reynolds number. We conducted simulations based
on this model [12], obtaining only small variations departing from the viscous protrusion height, of variable sign
depending on the riblet geometry and the range of s+. Changes of the order required to explain the experiments
were not reached until s+ ≈ 20− 40, which is too large.

3 Fundamental parameters for the characterization of riblet drag reduction

3.1 Drag reduction expressed in terms of the shift in the logarithmic profile

The dependence of the drag reduction on the Reynolds number cannot be completely described by the variation
of s+. The classical theory of turbulent boundary layers is that surface manipulations only modify the intercept
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Figure 2: (a) Experimental values of the viscous slope, as a function of the theoretical protrusion height. (b) Riblet
spacing for maximum drag reduction, as a function of the relative groove cross section Ag/s2. M , triangular riblets;
O , notched top and flat valley riblets; ◦ , scalloped semicircular grooves; 2 , blade riblets. Solid symbols are results
from Walsh et al. [33, 32], and open symbols results from Bechert et al. [2]. , equation (6); , equation (7).
Error bars in (b) have been estimated from the drag measurement errors given in the references.

of the logarithmic velocity profile, while both the Kármán constant, κ ≈ 0.4, and the wake function are
unaffected [10]. The free-stream velocity can then be expressed as

U+
δ =

(
2
cf

)1/2

= κ−1 log δ+ + B, (4)

where δ+ is the friction Reynolds number, and B includes both the near-wall intercept and the contribution from
the wake. The effect of a given riblet would then be to change B by a given amount, which would be equivalent
to the ‘roughness function’ used to characterise rough surfaces [19]. The resulting change of cf depends on
the Reynolds number δ+. It follows from (4) that, for constant Uδ and small relative variations of the friction
coefficient,

∆cf

cf0
=

∆τ

τ0
= − ∆B

(2cf0)−1/2 + (2κ)−1
, (5)

where the first term in the denominator is due to the change of uτ in U+
δ , and the second one comes from the

corresponding change in δ+. Comparison between riblets at different Reynolds numbers should then be done in
terms of the roughness function ∆B, not of ∆τ/τ0, and the same should be true when reducing experimental
data to aeronautical applications.

The effect of the protrusion height on the displacement of the streamwise vortices away from the wall,
mentioned in Section 2.2, can be quantified in terms of ∆B when ∆h is given in wall units. Jiménez [18]
conducted direct simulations of channels in which the protrusion effect was modelled using the active control
approach of [7]. The results were consistent with

∆B = µ0∆h+ ≈ 0.66∆h+. (6)

The above equation agrees well with a rapid-distortion model also in [18], but the coefficient should be
treated with care because of the very low Reynolds numbers at which the numerical experiments were conducted.
Bechert [2] proposed a different model, based on the modification of the logarithmic velocity profile caused by
a virtual origin, according to which

∆B = µ0∆h+ ≈ 0.785∆h+. (7)

The coefficients in equations (6) and (7) are too similar to determine from experimental data which one
represents reality more accurately. In any case, the viscous performance of the riblets is given by

∆B

s+
= µ0

∆h

s
, s+ ¿ 1, (8)

where µ0 is the coefficient in either (6) or (7), related to the drag-reduction slope m0 by combining equations
(1),(8), and (5) in the limit s+ → 0,

m0 =
µ0

(2cf0)−1/2 + (2κ)−1

∆h

s
. (9)
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Figure 3: (a) and (b), histograms of the optimum performance point for several riblet geometries, expressed as a function
of different geometric parameters. (c) Definition of the groove cross section, Ag.

A compilation of the experimental data available is shown in Figure 2(a), which should be interpreted in the
light of the experimental ambiguities. For example, the open squares are blade riblets from Bechert [2]. Those
with crosses were mounted on a different base plate than those without them, and they agree better with the
theory. Bechert noted the discrepancy, and repeated the second set of experiments after sealing the riblet
base. That increased the drag reduction by about 20%, which would bring them in line with the theoretical
prediction, but that experimental series was not documented well enough for us to include the correction in the
figure. Similar caveats apply to the other riblets in the figure, including those that appear to agree with the
theory.

3.2 Drag reduction regimes in terms of the groove cross-section

As we have mentioned in Section 2, it was stated early in riblet literature that riblet drag reduction can be
expressed as a function of s+, so that for a certain optimum spacing, s+

opt, the viscous regime breaks down
and the drag reduction is maximum. However, for a given geometry, as s+ varies so do all other geometric
parameters of the surface –when measured in wall units–, so h+ could for instance have been used instead of
s+ to characterise drag reduction behaviour. The question arises then of whether s+ is in fact the parameter
that determines when the optimum performance is achieved, or whether it is just a parameter that varies as the
determining one does. To illustrate how s+

opt varies depending on the riblet geometry, we have plotted in Figure
2(b) the optimum spacing against the ratio of the groove cross-section to the square of the spacing, Ag/s2. This
is roughly equivalent to a depth-to-width ratio for the grooves, and it results in the best data collapse among the
several geometric parameters tested. Although s+

opt is always in the range mentioned above, it is clear from the
figure that deeper grooves experience an earlier breakdown of the viscous regime, and that their maximum drag
reduction is achieved for narrower riblets. The reason for this is unclear. The vortices of the near-wall region
have diameters of the order of 20 wall units [22], and it has been reported in [29, 23, 6] that the degradation of
the effect of the riblets is associated with the lodging of the vortices within the riblet grooves. However, while
this observation qualitatively explains the order of magnitude of s+

opt, it does not explain why the variation of
the groove depth affects the value of s+

opt.
In Figures 3(a) and (b) we portray frequency histograms of the maximum drag reduction points of several

riblet geometries. The figures show that the optimum point has a significant scatter when expressed in terms
of s+, on the order of 40%. If the characterising parameter is (A+

g )1/2 instead, the scatter is reduced to ∼10%,
and we have (A+

g opt
)1/2 ' 10.7 ± 1.0 . The data with lower values of (A+

g opt
)1/2 correspond to experiments

for which either the viscous slope or the optimum performance point could not clearly be defined, such as the
measurements for fibers of Bruse et al. [4] or those for seal fur of Itoh et al. [16], and have thus been left out
in Figure 4.

The above result can be used for rough engineering estimations of the optimum performance of conven-
tional riblets in combination with the value of the viscous slope. We need to define a new viscous slope m∗

0 for
(A+

g )1/2,

m∗
0 = − ∂(∆τ/τ0)

∂(A+
g )1/2

∣∣∣∣
A+

g =0

=
s

(Ag)1/2
m0, (10)

so that in the viscous regime DR = m∗
0(A

+
g )1/2. Figure 4(a) depicts full drag reduction curves for the range

(A+
g )1/2 ≤ 20, for a wide variety of riblet geometries. The good collapse of the data, at least for (A+

g )1/2 . 15,
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Figure 4: Drag reductions of diverse riblets; (a) Full drag reduction curves from [2], as a function of m∗
0(A

+
g )1/2. (b)

DRmax as a function of m∗
0L

+
opt; symbols are as in Figure 2; , extrapolation from the viscous regime; ,

linear fit with slope 0.83.

Table 1: DNSes parameters.

No. of riblets 0 48 32 24 18 16 15 12
(A+

g )1/2 0 5.06 7.59 10.12 13.50 15.18 17.71 20.25
s+ 0 8.27 12.40 16.53 22.04 24.80 28.93 33.06

2π/Lz 3 3 3 3 3 3 2.74 3
Reτ 189.42 185.25 183.77 182.03 182.37 183.63 183.64 188.58

suggests that this Figure can be used, together with m∗
0 estimations from viscous computations, as a tool

for engineering predictions of drag reduction in a wide range of A+
g . For the different geometries portrayed,

DRmax is roughly 83% of the value that would result from the extrapolation of the viscous regime up to
(A+

g opt
)1/2. Figure 4(b) portrays the result of substituting the geometry-dependant value of (A+

g opt
)1/2 by a

fixed L+
opt = 10.7 . The figure shows how the approximation DRmax = .83 m∗

0 L+
opt is a quite accurate one for

conventional riblets, even those with depth-to-width ratios as low as 0.2; the error of the approximation is below
20%. It should however be noted that A+

g may not be an adequate parameter to characterise the performance
of unconventional geometries, such as the fiber riblets and seal fur that are considered in Figure 3(a) and left
out of Figure 4, or the nearly sealed grooves mentioned in [32]; for the limit of fully sealed grooves, the geometry
would behave as a flat surface, and modifying A+

g would have no performance impact. In any case, the use of
(A+

g )1/2 as the characteristic parameter for drag reduction is merely based on the available experimental data,
and further insight is needed to justify its use and clarify the nature of the breakdown of the viscous regime.
For that purpose, we conduct the numerical experiments described in the next section.

4 Numerical method for DNSes of channels with ribbed walls

In this section we briefly outline the method developed to solve the incompressible Navier-Stokes equations in
a parallelepiped domain which includes the walls of a ribbed channel. Rather than imposing strict incompress-
ibility, we impose a rapid convergence of the divergence of the velocity, D = ∇·u. We substitute the continuity
equation with

∂D

∂t
= F (D) = −λDD +

1
ReD

∇2D, (11)

where both λD and ReD are positive coefficients. This weak form of the incompressibility condition, similar to
that proposed by Nördstrom et al. [25], eliminates the usual ‘checkerboard’ problem for collocated grids [11].
The walls of the channel are modeled with an immersed boundary technique [15, 12].

Taking advantage of the periodicity of the problem, the velocity components and the pressure are ex-
panded in Fourier series along x and z, while the spatial differential operators are discretised in y using second-
order, centred finite-differences on a non-uniform colocated grid. The grid spacing in y is coarser in the centre
of the channel, so that the maximum ∆y is ∆y+

max ≈ 3 and the minimum, near the walls, is ∆y+
min ≈ 0.3. The

number of x modes is set so that ∆x+ ≈ 6. The number of z modes solved varies for each x − z plane; in
the centre of the channel, the modes retained are just enough to capture the smallest turbulent scales, so that
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Figure 5: Drag reduction results from DNSes of channels with rectangular riblets. The shaded area envelopes the
experimental results shown in Figure 4(b).

∆z+ ≈ 2, whereas near the channel walls the number of modes retained is larger in order to capture the detail of
the immersed boundaries and the adjacent flow. In physical space, the variable number of modes is equivalent
to a multi-block arrangement, in which the blocks that include the immersed boundaries have a finer grid in
z. Time integration uses a fractional-step, pressure-correction method, in combination with a three-substep
Runge-Kutta scheme [28].

We conduct our simulations in periodic channels with streamwise, spanwise and wall-normal dimensions
Lx = 2π, Lz = 2π/3 and Ly = 2. This value of Ly is the distance between the riblet tips at the bottom and top
walls; the domain height is slightly larger and adjusted for each test case to contain the whole ribbed surface up
to the groove floors. A mean streamwise pressure gradient is imposed to insure constant flow rate Qx ≈ 2, and
the viscosity in the simulations is chosen so Reτ ≈ 180. We conduct a set of experiments for a variable number
of riblets in the box just described, resulting in a set of experiments with different A+

g . The geometry chosen
for our experiments consists of rectangular riblets with aspect ratio h/s = 0.5 and blade thickness t/s = 0.25.
The number of z modes in the blocks containing the riblet surfaces is set so that each riblet spans for 16 grid
cells in the spanwise direction, in the dealiased physical space. The parameters of each experiment are given
in table 1. Notice that for the case of (A+

g )1/2 = 17.71, Lz is slightly increased to obtain the desired A+
g while

keeping the fixed riblet geometry resolution.

5 DNS results and discussion

Figure 5 portrays the drag reduction obtained from our test cases. The friction coefficients used to calculate
the drag reductions in the figure are defined as cf = 2/U+

c
2, where U+

c is the time-average of the mean velocity
at the central plane for each test case. By choosing U+

c instead of the bulk velocity, we seek to obtain friction
coefficients whose definition resembles as closely as possible that of friction coefficients in boundary layers,
which are based on the free-stream velocity. The friction velocity is estimated from the curve of total stress,
τ = τ(y), whose time average is nearly linear in y, by extrapolation to a virtual origin defined using a force
balance argument. The stress at the walls compensates the pressure gradient driving the flow, which is exerted
at the whole channel cross-section. The wall stress is calculated by extrapolation to a fixed y plane which gives
the same cross-section. For our rectangular riblets, this origin is h/4 above the riblet valleys. Our results show
good agreement with the experimental data, represented by the shaded area in Figure 5.

To examine the nature of the flow near the riblet surface, we have conducted statistical analyses of the
flow above riblets, which is in average periodic in the riblet spacing. Figure 6(a) portrays the averaged cross-
flow inside and immediately above a riblet groove for growing A+

g . For A+
g = 0, the viscous two-dimensional

cross-flow [12] is shown. For non-zero values of A+
g , the cross-flow is obtained as a mean of the flow at identical

stations above different riblets, over time and over the streamwise coordinate x. Conditioning the average
only to y and z would result in a nearly zero secondary flow, so the average is conditioned also to the mean
direction of the cross-flow at a plane immediately above the riblet valley, characterising the cross-flow over
each riblet groove as ‘rightwards’ or ‘leftwards’. The two statistics of near cross-flow fields are later combined
taking into account the existing symmetries. Figure 6(a) shows how for the larger, drag-increasing riblets, the
quasi-streamwise vortices are not lodged inside the grooves, as proposed in [6]; Figure 6(b) shows how their
distance to the wall decreases slightly for growing A+

g , but the distance to the riblet peaks is never smaller than
∼ 10+. The maximum intensity of the vorticity above the grooves conditioned to the flow direction is about
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Figure 6: (a) Crossflow streamlines of the averaged flow over and inside the riblet grooves for the test cases in Table
1, for increasing A+

g . The averaging is conditioned to the direction of the crossflow at a plane immediately above the
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Figure 7: Mean friction stresses at an x− z plane just above rectangular riblets. (a) Not conditioned to the cross-flow
direction; (b) conditioned to the cross-flow direction as in Figure 6. (1) Total stress; (2) Reynolds stress; (3) viscous
stress. Arrows indicate increasing A+

g . The highlighted line corresponds to viscous two-dimensional simulations for
A+

g = 0.

one third of the maximum vorticity, suggesting that the overlying vortices are not frozen above the grooves, but
instead have a tendency to linger above them more than over the peaks.

Figure 6(a) also shows that, in the viscous regime, a recirculating region exists in the riblet valley.
This result was already known from Stokes limit simulations [12], but the new data show the evolution of the
recirculating bubble for growing A+

g , and how it still exists up to the viscous-breakdown region. The recirculating
region isolates the valley floor from the overlying flow, preventing the penetration of high momentum flow inside
the grooves, and keeping the shear rate low at the groove walls. This low shear inside the grooves is however
not sufficient to guarantee drag reduction; for s+ → 0, the penetration of the outer flow inside the grooves is
minimum, but the drag reduction is zero. This is so because the lower shear at the groove walls compensates
the high shear at the peaks, so the average friction stress is the same as that of a flat wall. To gain more
insight on how the riblet size affects the mean friction stress, and also how the stress is distributed over the
riblet geometry, we have computed statistics for the viscous, Reynolds and total stresses at an x− z plane just
above the riblet peaks, following a procedure analogous to the one mentioned in the above paragraph. Figure
7 portrays the average stresses, both conditioned and not conditioned to the cross-flow direction. The figure
shows how the dominant contribution to the total stress is the viscous stress over the peaks. As A+

g increases,
the viscous stress increases above the peaks and decreases above the grooves, with a net mean decrease; for the
case of the largest A+

g , the tendency is inverted and the net viscous stress begins to increase. The Reynolds



stresses concentrate above the grooves, and are only significant for the larger riblets, for which the recirculation
zone has disappeared; in these cases, the increase in the Reynolds stress compensates the viscous stress decrease
above the grooves and, for the case of (A+

g )1/2 ≈ 20, it adds to the viscous stress increase over the peaks to
yield a net drag increase.

6 Conclusions

We have reviewed the drag-reduction regimes for riblets, analysing its nature in the viscous limit and exploring
the breakdown of the viscous regime. We have analysed how the geometry of the riblets affects that break-
down, and the optimum performance is achieved. We have found that the optima collapse with the parameter
(A+

g opt
)1/2, which can be interpreted as the characteristic lengthscale of the riblet grooves. In the riblet ex-

periments reviewed, the optimum performance is achieved for (A+
g opt

)1/2 ' 10.7 , with a ∼10% scatter. For
those configurations, the maximum drag reduction can be predicted with a 20% error if the slope of the drag
reduction curve in the viscous regime m∗

0 is known. This slope can easily be estimated from simple Stokes flow
computations.

We have also analysed the relationship between performance and geometry from numerical simulations.
We have observed that the overlying quasi-streamwise vortices concentrate above the riblet grooves, but the
vortex lodging proposed in [6] does not occur, at least for (A+

g opt
)1/2 < 20, which is well past the point of

maximum drag reduction, and already into the drag increasing regime. We have found that the breakdown of
the viscous regime coincides with the disappearance of the recirculating region in the riblet grooves. Once the
recirculation disappears, the Reynolds stresses over the groove become increasingly important, and result in the
loss of riblet efficiency and ultimately in a net drag increase.
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[25] J. Nördstrom, K. Mattsson, and C. Swanson. Boundary conditions for a divergence free velocity-pressure
formulation of the Navier-Stokes equations. J. Comput. Phys., 225:874–890, 2007.
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